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KEY POINTS

� Resting state functional MR imaging (rs-fMR imaging) is typically not applicable to the individual in a
clinical setting.

� Graph theory and machine learning methods are beginning to identify traumatic brain injury–spe-
cific features in rs-fMR imaging for group studies and starting to show promise as assistive tools
for individual diagnoses.

� Resting state magnetoencephalography has a higher temporal resolution and may be able to sup-
plement rs-fMR imaging findings.

� Moving rs-fMR imaging into the clinic should be approached with cautious optimism.
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INTRODUCTION

A traumatic brain injury (TBI) can be caused by a
bump, blow, or jolt to the head. TBIs can also be
caused by penetrating, or open, head injuries. In
the United States, approximately 1.7 million TBIs
occur each year. More than 1.3 million result in
an emergency department visit, 275,000 result in
hospitalizations, and 52,000 result in deaths. On
average, the most common cause of TBI is falls,
and the rates are highest among very young chil-
dren and adults older than the age of 75.1 Most
TBI cases are closed-head injuries, but some are
open-head injuries, which occur when the skull is
fractured or penetrated.

TBI encompasses a spectrum of brain abnor-
mality with many variables affecting the type and
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severity of injury. Mechanism of injury plays a
prominent role; however, the distribution of local
forces sustained by the brain parenchyma during
injury, and patient factors, including individual
anatomic differences, age, gender, medications/
substance use, and medical history, can also
dramatically affect the severity of injury and subse-
quent patient outcome.2–4 Multiple factors are
used to classify the severity of the TBI. The most
common include the Glasgow Coma Scale and
the Abbreviated Injury Scale–Head.5 The severity
of the injury is often classified from mild to severe.
The effects of mild TBI (mTBI) are often not visible
on conventional imaging, whereas severe TBI can
manifest as an obvious finding, such as an open-
head injury or hematoma.
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Primary injuries occur from tissue damage dur-
ing the time of impact from mechanical forces
that produce tissue strains and stresses.6,7 Head
impact generates both contact and inertial forces
and can result in extra-axial and/or intra-axial
intracranial tissue damage. Some head injuries
may be acutely life threatening and require emer-
gent neurosurgical interventions, while other
sequelae of traumatic head injury are more subtle
with little or no evidence of tissue damage on con-
ventional anatomic imaging and only result in evi-
dence of dysfunction of functional connectivity
using advanced techniques, including resting
state functional MR imaging (rs-fMR imaging) or
magnetoencephalography (MEG).
Extra-axial tissue damage commonly results in

epidural hematoma, subdural hematoma, sub-
arachnoid hemorrhage, and/or subdural hygroma.
Associated secondary complications of extra-
axial injury often requiring emergent intervention
include cerebral herniation, edema, hydrocepha-
lus, or ischemia. Focal primary TBIs of intra-axial
tissue also occur with closed head trauma and
result from both direct impact of the brain with
the cranial vault and transmitted linear and rota-
tional forces on the brain. The rigid cranial vault
and skull base provide a non-deformable internal
surface of contact with the relatively soft, deform-
able, and mobile brain. Secondary effects of intra-
axial hemorrhage include hypoxic-ischemic dam-
age, oxidative stress from reactive oxygen spe-
cies, neuroexcitatory response, cerebral edema,
neuronal cell death, blood-brain barrier perme-
ability, and autonomic dysfunction.8–11 Cortical/
subcortical contusions may also be associated
with subarachnoid hemorrhage as a result of
extension of parenchymal hemorrhage beyond
the pia.
Diffuse traumatic axonal injury (DAI) typically in-

volves a wide distribution with regional involve-
ment of white matter axons, which are vulnerable
to shearing strains owing to their long, highly struc-
tured architecture. Using the word diffuse is some-
what of a misnomer because the pattern is more
multifocal with affected areas interposed with non-
affected areas. White matter axons are particularly
vulnerable to rapid shearing strains. Classically, a
histologic grading scheme of diffuse axonal injury
based on region of involvement is often used to
describe the severity of DAI. Grade 1 involves the
cerebral hemispheres, corpus callosum, brain-
stem, or cerebellum; grade 2 involves the
corpus callosum, whereas grade 3 involves
the brainstem.12 These sites, particularly cortical/
subcortical white matter, splenium of the
corpus callosum, and brainstem, are also the
areas frequently demonstrating abnormalities on
conventional neuroimaging studies. Primary axot-
omy at the time of impact is considered rare.
Instead, it is thought that mechanical forces pro-
duce axonal deformation and cytoskeletal disrup-
tion, which results in accumulation of transported
materials appearing as multiple axonal swellings,
“axonal varicosities,” or a single swelling referred
to as “axonal bulb.”13 These findings correlate
with axonal disconnection. Although contusional
microhemorrhage, apoptosis, and necrotic cell
death cascades likely occur with diffuse axonal
injury, there has also been demonstration of
neuronal plasmalemmal poration and disruption,
leading to either necrosis or reactive change
without cell death.14,15 The progression from
disruption in axonal transport leading to axonal
disconnection, apoptosis, and Wallerian degener-
ation has been traditionally thought to occur over
the acute and subacute period following trauma;
however, axonal degeneration may occur for years
following injury. For these reasons, DAI is consid-
ered a disease of disconnection, which has
made it an ideal candidate for study of functional
connectivity using tools such as rs-fMR imaging.
This review covers rs-MR imaging and resting

state magnetoencephalography (rs-MEG) acquisi-
tion, processing, and findings. A specific focus is
given to machine learning and graph theory given
the multiple applications of these methods in the
literature and the potential for automated detec-
tion and diagnoses in the future.
NORMAL ANATOMY AND IMAGING
TECHNIQUE

Conventional noncontrast head computed to-
mography (CT) and MR sequences remain the
standard of care in clinical neuroimaging in the
setting of TBI. Noncontrast head CT is rapid,
accessible, and safe for all patients, plus it is
very sensitive for detection of hemorrhage and
other potentially life-threatening sequela of closed
head injuries. These features make CT an ideal
tool in the acute/hyperacute setting and for serial
follow-up imaging when there are changes in clin-
ical status. In the acute or early subacute setting,
conventional MR imaging is typically reserved for
patients with clinical/neurologic symptoms that
are discordant with CT findings or when the injury
extent may be better assessed by MR imaging. A
conventional brain MR imaging protocol typically
includes T1-weighted spin-echo or 3-dimensional
(3D) T1, T2-weighted fast-spin-echo, T2 fluid
attenuated inversion recovery (FLAIR), and echo
planar diffusion-weighted imaging.
Susceptibility-sensitive sequences, including T2*
gradient recalled echo or 3D susceptibility-
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weighted imaging (SWI), which are sensitive to
blood products and can reveal microhemorrhages
associated with DAI, are frequently included in the
routine posttrauma MR imaging protocols. Exam-
ples of mild and severe DAI are shown in Figs. 1
and 2, respectively. Additional advanced MR
techniques include evaluation with diffusion
tensor imaging, arterial spin labeling perfusion,
dynamic susceptibility contrast perfusion, and
MR spectroscopy, but are beyond the scope of
this article. Typical imaging findings of TBI on
CT or conventional MR sequences range from
frank intracranial hemorrhages to petechial foci
of hemorrhage, as are often seen in diffuse axonal
injury. However, these techniques may appear
normal and often are insensitive to sequela of
mTBIs.
RESTING STATE FUNCTIONAL MR IMAGING
PROTOCOLS

fMR imaging relies on coupling of cerebral
blood flow with neuronal activity (hemodynamic
response) and most commonly uses an MR
imaging technique sensitive to changes in blood
hemoglobin oxygenation (BOLD, blood oxygena-
tion-level–dependent signal). As neuronal activity
increases in an area of the brain, hemodynamic
responses cause an overcompensation of blood
flow to the region, resulting in increased signal
from a local change in the deoxy:oxyhemoglobin
ratio. BOLD-sensitive sequences rely on suscep-
tibility differences in oxyhemoglobin and deoxy-
hemoglobin. Even in optimal situations, signal
change from active and inactive areas is relatively
small, and this technique suffers from low signal-
to-noise ratio. Understanding the physical mech-
anism of fMR imaging acquisition is important to
consider in patients with TBI because there are
unique features of these patients that may affect
Fig. 1. Conventional MR findings of mild diffuse axonal in
demonstrate only petechial foci of susceptibility at the gra
lobes. No other imaging findings are demonstrated on co
analysis techniques and interpretation of fMR im-
aging results in these patients. Patients with TBI
may have dysregulation in the coupling of hemo-
dynamic response with neuronal activity, which
may complicate whether abnormalities are due
to actual decreased neuronal activity or alter-
ations in hemodynamic response. Also, because
fMR imaging relies on changes in susceptibility,
intracranial blood products can cause artifacts
that obscure true neuronal activation. fMR imag-
ing can be acquired with a task (task-based
fMR imaging), such as attending to a visual stim-
ulus, or while the subject is at rest (rs-fMR imag-
ing). rs-fMR imaging relies on low-frequency,
spontaneous fluctuations in the BOLD signal
that are present even in the absence of a stimulus
or task.16 No consensus exists on the optimal
acquisition techniques for rs-fMR imaging. How-
ever, typically, acquisition entails an ultrafast
single-shot, whole-head, gradient-echo echo
planar imaging sequence with a TR w2 to 3 sec-
onds, over a period anywhere from 2 to 30 mi-
nutes.17 Shorter acquisition times are less
susceptible to patient motion, but fewer data
points are available for analysis. Acquisition may
occur with the patient’s eyes open or closed.18

Spatially discrete brain regions that exhibit strong
interregional correlation, after excluding nonphy-
siologic sources of correlation, are assumed to
be functionally connected. A suggested MR
acquisition protocol for TBI patients is detailed
in Table 1 and should complement the existing
clinical examination. A 3-T scanner would be
preferred, and adjustments to the protocols opti-
mized for particular scanners with techniques like
parallel imaging can achieve data with better
spatial or temporal resolution. Findings on fMR
imaging in TBI patients reported in the literature
are discussed later. Although this technique holds
promise for further investigation in TBI patients,
jury. Axial T1 (A), axial T2 FLAIR (B), and axial SWI (C)
y-white interfaces of bilateral frontal, and left parietal
nventional sequences.



Fig. 2. Conventional MR findings of severe diffuse axonal injury. Sagittal T1 (A) demonstrates a petechial focus of
T1 shortening compatible with subacute blood products in themidbrain. Axial T2 (B), axial diffusion-weighted im-
ages (D), and apparent diffusion coefficientmap (E) demonstrate a focus ofmild restricted diffusion in the splenium
of the corpus callosum as well as foci of increased T2 signal in the periventricular white matter, right internal
capsule, and right thalamus.Axial and coronal SWI (C and F) demonstrate numerous foci of susceptibility, consistent
with foci of hemorrhage, in the brainstem, temporal lobes, periventricular white matter, and corpus callosum.
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existing evidence is insufficient for routine clinical
TBI diagnosis and/or prognostication at the indi-
vidual patient level.19 However, research is
ongoing to determine the appropriate methods
of application and interpretation in the clinical
setting of TBI.
Table 1
Suggested resting state functional MR imaging prot

Sequence Sequence Parameters

Sagittal 3D T1 MPRAGE TR 2500/TE 3

Axial thin T2/FLAIR or
sagittal 3D T2/FLAIR

TR 8000/TE 80

Axial 3D SWI TR 30/TE 20

BOLD rs-fMRI, axial
GE-EPI

TR 5 2000–3000 ms,
TE 5 30–40 ms,
a 5 80�–90�

Diffusion tensor
imaging, axial
GE-EPI

TR 5 4500/TE 5 100, b 5 0
and b 5 1000 � 6–30
directions
RESTING STATE FUNCTIONAL MR IMAGING
FINDINGS

Subjects suffering from TBI tend to show impair-
ment in high-level cognitive functions such as
attention, memory, and executive function.20,21
ocol for traumatic brain injury

Acquisition Parameters Acquisition Time

Isotropic, 1 � 1 � 1 mm w5–8 min

0.5 � 0.5 � 3 mm or
isotropic 3D
(1 � 1 � 1 mm)

w4–5 min

0.5 � 0.5 � 2 mm w3–4 min

Near isotropic,
3 � 3 � 3 mm to
4 � 4 � 4 mm/matrix
64 � 64

w5–10 min

1.5 � 1.5 � 3–5 mm/matrix
128 � 128

w10 min (with
parallel
imaging)
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Because the integration of information across
various regions of the brain is required for these
high-level functions, researchers have often
chosen to transform rs-fMR imaging data into a
graph-based representation, also called a network
representation. These graphs, or networks,
consist of nodes connected by edges. The nodes
can be brain regions, subnetworks, or individual
voxels. Brain regions are determined by parcellat-
ing anatomic MR imaging and transferring these
brain regions to the rs-fMR imaging through core-
gistration, whereas brain subnetworks are defined
directly on the rs-fMR imaging data through a
multivariate decomposition method, such as inde-
pendent component analysis (ICA). For all of the
parcellation schemes, the graph edges charac-
terize a measure of connectivity between node
pairs.

Graph Theoretic Measures

To make graphs amenable for quantitative anal-
ysis, graph theory is often used to convert the
discrete graph into a set of descriptive numerical
measures. Graph theoretic methods enable the
study of functional integration through various
metrics such as small-worldness, which measures
the balance between network segregation and
integration, and network efficiency, which is
inversely proportional to the path length and thus
strongest with the shortest path length. Functional
segregation of the network can be studied through
other metrics, such as the clustering coefficient,
which quantifies how well connected the neigh-
bors of a node are to one another. These
network-based characterizations of the brain
may provide insight into the dysfunction of inter-
acting nodes in patients with TBI.21 For example,
it has recently been shown that network-based an-
alyses offer the potential to understand subtle
changes in cognitive function and the effects of
rehabilitation.22 It is important to bear in mind
that these metrics provide sensitive but nonspe-
cific markers of brain function.

Mounting Evidence for Connectivity Changes
in Traumatic Brain Injury

In a graph analysis study by Pandit and col-
leagues,23 TBI subjects exhibited a reduction in
overall functional connectivity as evidenced by a
reduction in the total number of connections pre-
sent within the entire network. Longer average
path lengths and reduced network efficiency in
TBI patients particularly in a major network hub
such as the posterior cingulate cortex were also
found. However, the network segregation was
not affected significantly. These findings suggest
patients suffering from TBI may show a significant
deviation from the healthy brain’s small world
network. Overall, the patterns of network dysfunc-
tion caused by TBI are complex, but some unifying
principles are emerging, such as the abnormal in-
teractions between the sensory network and the
default mode network (DMN) after TBI. Highly con-
nected hub regions, such as the precuneus, are
particularly susceptible to alterations in functional
connectivity following TBI.21

Recently, Murugesan and colleagues24 have
developed a machine learning approach that
can automatically distinguish between youth (9–
13 years) athletes who have experienced varying
levels of head impact exposure in the course of a
single season of play. The levels include no or
minimal exposure for control athletes and low-
and high-impact exposure for football players.
The method achieves high labeling accuracy
using just features from the intrinsic networks
extracted from rs-fMR imaging. The major
components of their approach are shown in
Fig. 3.
Evidence for Hypoconnectivity in Traumatic
Brain Injury

Multiple studies have shown evidence of
hypoconnectivity following TBI using seed-
based analysis. Xiong and colleagues25 found
decreased functional connectivity in the thal-
amus, caudate nucleus, and right hippocampus
in mTBI patients. Johnson and colleagues26

found the DMN to have a reduced number of
connections and a reduction in the detectable
connection strengths. A decreased number of
connections and decreased strength of connec-
tions were found in the posterior cingulate and
lateral parietal cortices, and an increased num-
ber of connections were found in the medial pre-
frontal cortex even in less severe subconcussive
head impacts, a milder injury which typically
exhibits no clinical symptoms. Rigon and col-
leagues27 investigated the differences in inter-
hemispheric functional connectivity of resting
state networks between chronic mild to severe
TBI patients and normal controls by selecting
components such as the DMN, frontoparietal,
executive, and sensory motor areas. Their results
suggest decreased interhemispheric connectivity
for externally oriented networks, such as
the frontoparietal and executive networks, but
increased interhemispheric connectivity for the
DMN following TBI.

Other studies using ICA also demonstrate hy-
poconnectivity following TBI. Stevens and col-
leagues28 used ICA to extract 12 distinct resting



Fig. 3. Process flow for the training and application of amachine learning classifier that predicts head impact expo-
sure using rs-fMR imaging. Left column highlights themain processing steps frompreprocessing through classifica-
tion. Right column provides details of each step presented by Murugesan and colleagues,24 which automatically
distinguishes athletes who, over the course of a single season of play, have experienced: no impact exposure,
low-impact exposure, and high-impact exposure. ADABOOST, adaptive boosting; GRADBOOST, gradient boosting;
ICASSO, software package for investigating ICA; KNN, k-nearest neighbors; SVM, support vector machine.
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state networks from 30 mTBI patients and
extended their study to all the extracted compo-
nents. Diminished connectivity of the posterior
cingulate cortex in the DMN was reported in
mTBI. Iraji and colleagues29 performed ICA anal-
ysis in 12 mTBI patients and reported reduced
functional connectivity in the DMN and precuneus
regions compared with controls. Palacios and col-
leagues30 also used ICA on 75 mTBI patients, who
also had CT within 2 to 3 hours of injury. The mTBI
patients had significantly decreased connectivity
in the frontal brain areas when conventional struc-
tural imaging (CT/MR) demonstrated evidence of
TBI, and significantly decreased connectivity in
the orbitofrontal network and the DMN when the
conventional imaging was negative for evidence
of TBI.
Evidence for Hyperconnectivity in Traumatic
Brain Injury

There is also evidence for hyperconnectivity in TBI,
and it is considered to be a common response to
TBI. Shumskaya and colleagues20 studied the
relationship between functional connectivity pat-
terns and cognitive abnormalities using resting
state networks extracted from group ICA of 43
moderate/severe TBI patients and found that
attention abnormalities in TBI were associated
with increased connectivity in the sensorimotor
networks. In addition, longitudinal studies have
shown that despite decreasing functional connec-
tivity during recovery, connectivity remained
higher in moderate to severe TBI relative to
healthy controls.31,32 This work suggests that
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hyperconnectivity in moderate and severe TBI pa-
tients may be present regardless of recovery
phase (acute, subacute, or chronic phase) and
does not represent a transient process as found
in other mTBI studies. Thus, hyperconnectivity
might become a useful prognostic tool to predict
outcomes in moderate and severe TBI.33 Differ-
ences in the results between studies may be attrib-
uted to differences in severity of TBI of the studied
cohorts, region selection methods, time from
injury, graph metrics used, the nature of connec-
tivity studied, and extent of gray and white matter
damage.
Automating Diagnosis with Machine Learning

Conventional neuroimaging techniques have
limited ability to detect functional connectivity ab-
normalities, which underlie TBI-related neurocog-
nitive deficits. Advanced neuroimaging, including
rs-fMR imaging, can provide increased sensitivity
to measure such deficits; however, these deficits
can be subtle and diffuse and vary from patient
to patient, whichmakes them hard to identify using
standard statistical techniques. Therefore, it is
important to develop tools that help automate clin-
ical mTBI diagnostics using rs-fMR imaging.
Promising machine learning methods have been
developed for rs-fMR imaging interpretation that
identify important diagnostic network features to
predict mTBI severity, aim to automate mTBI diag-
nosis, and determine whether patients with TBI
have similar functional network changes as pa-
tients with Alzheimer disease (AD).

Ravishankar and colleagues34 used a machine
learning framework to identify functional connec-
tivity features associated with symptom severity
in mTBI. In this study, 78 mTBI patients were
imaged at 4 time points (3 days, 7 days, 21 days,
and 3months) after injury with 6-minute rs-fMR im-
aging. The investigators found that changes in the
executive control and visual networks were most
strongly associated with symptom scores. In
particular, decreased connectivity between left ex-
ecutive control network and higher visual networks
were found, which may correspond to some
typical mTBI symptoms, including memory and
visual deficits. This study suggests that rs-fMR im-
aging network features may be useful for predict-
ing effects of mTBI and recovery trajectories.

Another machine learning approach developed
by Iraji and colleagues35 combines structural and
functional network connectivity changes to predict
whether a subject was a healthy control or an
mTBI patient. In this study, 40 mTBI patients at
the acute stage and 50 healthy controls
were recruited. Sixty signatures were found that
distinguish patients from controls with 100%
specificity and 93.75% sensitivity. Specifically,
the emotion network demonstrated decreased
intranetwork connectivity, whereas perception
networks demonstrated increased interactions
among action-emotion and action-cognition
regions.

Machine learning is also being used to charac-
terize a putative association between TBI and
AD. Previously, Van Den Heuvel and col-
leagues36 suggested TBI may be a risk factor
for developing AD. More recently, Vanderweyen
and colleagues37 hypothesized that there is a
common network abnormality between the func-
tional connectome of TBI and AD, and a machine
learning-based model was developed to test this
association. The model, when trained on AD and
healthy control subjects, achieved 82% accuracy
in distinguishing AD from healthy controls.
Notably, the same classifier also achieves an ac-
curacy of 80% distinguishing TBI from healthy
controls without any retraining on TBI, indicating
that there are common network abnormality as-
pects in the connectomes of AD and TBI. More-
over, these results suggest that existing large,
longitudinal Alzheimer datasets may be able to
jump start the machine learning process,
perhaps obviating gathering as much longitudi-
nal TBI imaging data in order to develop a diag-
nostic tool for TBI.
Longitudinal Recovery Monitoring and
Outcome Prediction

Complementary to the development of machine
learning-based methods has been the concurrent
development of statistical methods that predict
TBI outcomes from subacute and longitudinal rs-
fMR imaging functional connectivity measures.
These methods may be able to predict the future
recovery profile and determine which patients
will require the most aggressive cognitive therapy
and careful monitoring and which patients may
do well with simply palliative care.

In a study of the DMN using rs-fMR imaging by
Zhu and colleagues,38 there is evidence that lon-
gitudinal changes in functional and structural
connectivity of the default-mode network (DMN)
can serve as a potential biomarker to monitor
sports-related concussion recovery. This study
tracked 11 control subjects and the recovery of
8 concussed collegiate football players over
the course of 30 days after injury. Resting
state and diffusion MR imaging (DTI) were ac-
quired from each subject within 24 hours,
7 days, and 30 days after concussion. In
both cohorts, DTI-based structural connectivity
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remained unchanged throughout the study; how-
ever, the cohorts differed significantly in the pro-
gression of overall DMN functional connectivity.
Compared with the control group, the concussed
group exhibited increased functional connectivity
on day 1, significantly decreased functional con-
nectivity on day 7, and partial recovery to that of
the normal group by day 30. These results indi-
cate rs-fMR imaging holds potential as a
biomarker to monitor recovery in the concussed
athlete.
Banks and colleagues39 studied rs-fMR imag-

ing differences between mTBI patients and
healthy controls using a different set of functional
connections, namely the functional connectivity
of the thalamus with other regions and brain net-
works. This work examined longitudinal func-
tional connectivity changes over a 4-month
period in 13 mTBI subjects (mean age 39.3,
31% women) and 11 age- and gender-matched
controls without mTBI (mean age 37.6, 36%
women). Compared with controls, mTBI patients
exhibited an increased functional connectivity
between the thalamus and the DMN, whereas
exhibiting a decreased functional connectivity
between the thalamus and the dorsal attention
network (DAN) and between thalamus and
the frontoparietal control network. From 6 weeks
to 4 months after injury, increased functional
connectivity was identified between the thalamus
and the DAN that was associated with decreased
pain on the Brief Pain Inventory, and decreased
postconcussive symptoms on the River-
mead Post-Concussion Symptoms Question-
naire. These findings suggest that thalamic
connectivity may serve as a quantitative measure
of recovery extent following mTBI.
MAGNETOENCEPHALOGRAPHY PROTOCOLS

MEG is a noninvasive form of brain imaging.40

Clinically, MEG is used to identify seizure foci in
patients with epilepsy.41 Recent studies have
shown MEG to be a useful tool in TBI research.
One such study by Huang and colleagues42

demonstrated changes in functional connectivity
during rs-MEG in Veterans diagnosed with mTBI
due to a blast. In this study, Veterans with blast-
induced mTBI had increased functional connectiv-
ity in all frequency bands but the alpha band.
Another study by Tarapore and colleagues43

showed decreased functional connectivity in the
alpha band in a group of civilian patients with
mild, moderate, and severe TBI. A study by
Alhourani and colleagues44 found decreased local
efficiency in different brain regions of patients with
mTBI.
Acquisition

The high temporal resolution and wider dynamic
range of MEG complements and extends standard
rs-fMR imaging acquisition. Typical MEG scanners
use between 250 and 300 sensors to measure the
magnetic signals from the brain. These sensors
are located within a dewar and do not come in
direct contact with the subject’s scalp. The acqui-
sition is completely passive, and head position in-
dicator coils are applied to track any head
motion.45 rs-MEG acquisition is similar to rs-fMR
imaging from the subject’s perspective. The sub-
ject is asked to keep their eyes open, closed, or
look at a cross-hair displayed on a projector for 6
to 10 minutes. However, in MEG, the subject is
often seated rather than in a supine position.

Reconstruction Techniques

The sources of these signals can be mapped
from sensor space to source space (eg, brain
space) using a variety of source localization
algorithms. These algorithms are often simpler,
yet more accurate, than those used in electroen-
cephalography because the magnetic fields are
relatively unaffected by the conductivity of the
various tissues in and surrounding the brain, trav-
eling seamlessly through the brain and skull. One
source localization approach is beamforming,
whichbuilds a spatial filter andwas originally devel-
oped for radar technology.46 Beamforming
methods used for MEG source reconstruction are
often designated as source “scanning” methods
because they search a grid for the best solution,
usually by minimizing the noise in the output or
source variance.47 Compared with other methods,
one benefit of the beamforming methods is that
these methods do not limit the spatial solution to
predetermined anatomic locations or regions of in-
terest. Such data-driven solutions can minimize
model bias for resting state analyses.

MAGNETOENCEPHALOGRAPHY FINDINGS
Frequency Domain

MEG data can also be analyzed in the frequency
domain. The frequencies are primarily divided
into functional categories, or spectral bands, of
delta, theta, alpha, beta, and gamma. Changes in
the magnitude and location of these frequencies
during resting state scans may be informative of
disease states. TBI literature often focuses on
the delta band. Delta rhythms (0.5–4 Hz) are nor-
mally present during deep sleep but are also
seen in pathologic states in adults. Pathologic
delta waves originate in different locations
depending on the disease. Predominantly, delta
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waves arise in areas of the cortex overlying white
matter lesions.48 Research on these rhythms and
their causes is still ongoing.

Of particular interest to TBI is work byHuang and
colleagues49 showing increased delta waves after
TBI. This work describes an automated algorithm
for deltawavequantification applied to 45mTBI pa-
tients and 10 moderate TBI patients with rs-MEG.
Abnormalities were detected in the delta waves of
87% of the mTBI patients and 100% of the moder-
ate TBI patients. In addition, the number of cortical
regions with abnormal delta waves correlated
significantly with the post–concussive symptom
scores.49–52 Preliminary data from another study
also showed coup contrecoup injury patterns.
Automating Diagnosis with Machine Learning

Manual analysis of theMEGdata is typically used as
a cursory inspection to ensure that the data have
been collected properly, whereas quantitative sta-
tisticalanalysesandautomatedmachine learning in-
terpretations are important to bringing rs-MEG into
routine clinical use. Recently, several machine
learning methods have been developed for rs-
MEG interpretation that help identify important diag-
nosticnetwork features toautomatemTBIdiagnosis
and help predict mTBI severity. An approach that
can automate individual diagnosis would overcome
subjectivity in concussion diagnosis commonly
based on clinical judgment from self-reported mea-
sures and behavioral assessments.

Vakorin and colleagues53 investigated the type of
alterations that occur in resting state oscillatory
network phase synchrony in adults with mTBI and
whether machine learning can accurately detect
mTBI in individual subjects. rs-MEG was recorded
and structuralMR imagingwasacquired from20pa-
tients with mTBI and 21 age-, gender-, and
handedness-matched healthy controls. mTBI was
associated with reduced network connectivity in
the delta and gamma frequency range (>30 Hz) and
increased connectivity in the slower alpha band (8–
12 Hz). Themost discriminatory featureswere found
in the alpha band (8–12 Hz). Classification confi-
dencewas found to be correlatedwith clinical symp-
tomseverity scores.Overall, the results demonstrate
that combining MEG network connectivity and ma-
chine learning is a promising approach to diagnose
mTBI and may also help estimate mTBI severity.

Antonakakis and colleagues54 investigated the
utility of a different set of features extracted from
rs-MEG for discriminating mTBI from healthy
controls. This study analyzed cross-frequency
coupling from rs-MEG in 30 mTBI patients and
50 controls. A classification accuracy of greater
than 90% was achieved in distinguishing mTBI
patients from controls across many frequency
band pairs. A maximum of 96% accuracy was
achieved across the delta and low gamma bands,
and this same coupling demonstrated 100%
sensitivity and 93% specificity. Their findings
showed that compared with mTBI patients,
healthy controls formed a dense network of stron-
ger local and global connections characteristic of
higher functional integration. These results under-
score the critical role development of machine
learning tools for studying brain networks
computed from rs-MEG serves and suggest that
phase-to-amplitude coupling and tensorial repre-
sentation of connectivity profiles may yield valu-
able biomarkers for the clinical diagnosis of mTBI.
PEARLS, PITFALLS, VARIANTS

There is significant heterogeneity in the current
literature that may hinder direct translation to pa-
tient care. Imaging of patients with TBI faces
many clinical challenges limiting its application.
Timing of acquisition of rs-fMR imaging in patients
with TBI, in relation to the patient’s injury, provides
several unique challenges.

First, it is difficult to image these patients in the
hyperacute or acute setting because MR imaging
is a relatively lengthy process that can preclude
administration of critical resuscitative measures.
Patients with TBI should only be sent to MR imag-
ing if they are hemodynamically stable. Scanning
patients under critical care who are intubated re-
quires a team effort by technologists, nursing, res-
piratory therapists, and physicians to safely and
effectively perform an MR imaging in the clinically
critical patient. Frequently, a routine noncontrast
head CT can be safely performed and will
adequately answer the clinical question in the
acute setting. Furthermore, when MR imaging is
necessary, rs-fMR imaging acquisition is not typi-
cally included as part of an expedient brain MR im-
aging protocol, because it has not yet been proven
clinically useful in these patients.

Second, in the acute setting, TBI patients have
been demonstrated to have alterations in hemody-
namic response that may confound rs-fMR imaging
analysis and interpretation, if not properly
accounted for in the analysis. Finally, hemorrhage
and contusions may alter the BOLD signal or pro-
duce artifact that limits evaluation. Timing acquisi-
tion to minimize the effects of noninterest, while
maximizing the effects of interest, is important;
however, how to reliably establish this timing is yet
to be defined because there is no clear consensus
on the best time or times to perform rs-fMR imaging
on TBI patients. Because the injury and subsequent
healing process are dynamic, imaging only provides
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a single snapshot in time of that process. Longitudi-
nal studies with consistent imaging and analysis
techniques need to be performed to understand
the most useful time or times for performing rs-
fMR imaging before it will be accepted as a useful
biomarker for diagnosis and prognosis in TBI.
Translation of research to individual clinical pa-

tients poses many difficulties. Translation of post-
processing methods proposed in the literature
may be difficult without the proper detailed docu-
mentation and computing resources. Application
of group analyses to individual patients risks
extrapolation from outside of the specific charac-
teristics of the studied patient cohort and may
lead to inaccurate interpretation of the results for
an individual patient. Training machine learning
methods to make individual diagnoses and prog-
noses is one step toward remedying this limitation.
Given the complex biomechanics of closed head
injuries and many additional variables involved in
TBI, including patient characteristics, trauma
mechanism, and post–trauma management,
each individual injury is truly unique.
Pearls, Pitfalls, Variants

� Acquisition of rs-fMR imaging is difficult in
the acute setting because of more pressing
clinical needs.

� Hemorrhage and contusions may alter BOLD
signal.

� Translation of research methods to individual
clinical patients is difficult.

� Postprocessing methods may not be
reproducible.

� Group analyses applied to an individual
may be inaccurate.

- Training machine learning methods may
make individual diagnoses and progno-
ses possible.
DISCUSSION

Respecting the aforementioned limitations, rs-fMR
imaging is a leading imaging candidate for transla-
tion to the clinic. Assignment of diagnosis andprog-
nosis to patients carries serious ethical and
medicolegal implications that must be considered;
providing an inaccurate diagnosis or prognosis
based on new techniques without adequate sup-
portiveevidence in theexisting literature is unethical
andmaybenegligent. Inaddition,because the topic
of TBI has been recently in the news and social me-
dia, the interested public, including potential
judges, jurors, and lawyers,mayhavepreconceived
ideas and biases. Furthermore, new and complex
techniques, such as rs-fMR imaging, carry implicit
risks of oversimplifying the pathophysiology, tech-
nique of acquisition, method of analysis, and inter-
pretation for the lay public. In summary, care must
be taken to ensure there is adequate evidence sup-
porting the clinical utility of these techniques before
incorporating them into routine clinical care.
In the future, themethods discussed in this review

should be tested on large data sets to determine
clinical relevance. Comorbidities such as depres-
sion and posttraumatic stress disorder should be
included to determine their effects on the algo-
rithms. In addition, the methods should be auto-
mated so that they can be easily reproducible in a
clinical routine. One of the more promising avenues
for rs-fMR imaging and rs-MEGmay be the ability to
predict recovery time and evaluate therapies. Both
modalities allow us to study the healing process in
a quantitative way that has not been available previ-
ously. In conclusion, there are many promising ave-
nues for rs-fMR imaging and rs-MEG in TBI
diagnosisand treatment.Moving these into theclinic
should be approached with cautious optimism.
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